The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
Multibeam forward-looking sonar (MFLS) plays an important role in underwater detection. There are several challenges to the research on underwater object detection with MFLS. Firstly, the research is lack of available dataset. Secondly, the sonar image, generally processed at pixel level and transformed to sector representation for the visual habits of human beings, is disadvantageous to the research in artificial intelligence (AI) areas. Towards these challenges, we present a novel dataset, the underwater acoustic target detection (UATD) dataset, consisting of over 9000 MFLS images captured using Tritech Gemini 1200ik sonar. Our dataset provides raw data of sonar images with annotation of 10 categories of target objects (cube, cylinder, tyres, etc). The data was collected from lake and shallow water. To verify the practicality of UATD, we apply the dataset to the state-of-the-art detectors and provide corresponding benchmarks for its accuracy and efficiency.
translated by 谷歌翻译
Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions. While these capabilities have led to widespread adoption, most LLMs are developed by resource-rich organizations and are frequently kept from the public. As a step towards democratizing this powerful technology, we present BLOOM, a 176B-parameter open-access language model designed and built thanks to a collaboration of hundreds of researchers. BLOOM is a decoder-only Transformer language model that was trained on the ROOTS corpus, a dataset comprising hundreds of sources in 46 natural and 13 programming languages (59 in total). We find that BLOOM achieves competitive performance on a wide variety of benchmarks, with stronger results after undergoing multitask prompted finetuning. To facilitate future research and applications using LLMs, we publicly release our models and code under the Responsible AI License.
translated by 谷歌翻译
在本文中,我们提出了与IEEE计算机协会在CVPR 2022上同时与IEEE计算机协会研讨会同时举行的多手术检测挑战。我们的多手术检测挑战旨在检测自动图像操作,包括但不限于图像编辑,图像合成,图像合成,图像,图像,图像,图像合成,图像,图像编辑一代,图像Photoshop等。我们的挑战吸引了来自世界各地的674支团队,约有2000个有效的结果提交数量。我们邀请了前十支球队为挑战提供解决方案,其中三支球队在大结局中获得了奖项。在本文中,我们介绍了前三名团队的解决方案,以增强图像伪造检测领域的研究工作。
translated by 谷歌翻译
深度神经网络(DNN)模型已在广泛的监督学习应用中实现了最先进的预测准确性。但是,准确量化DNN预测中的不确定性仍然是一项艰巨的任务。对于连续的结果变量,一个更困难的问题是估计预测密度函数,这不仅提供了预测不确定性的自然量化,而且还可以完全捕获结果的随机变化。在这项工作中,我们提出了贝叶斯深噪声神经网络(B-Deepnoise),该网络通过将随机噪声变量从输出层扩展到所有隐藏层来概括标准的贝叶斯DNN。潜在的随机噪声使B-单调的噪声具有近似高度复杂的预测分布的灵活性,并准确量化了预测性不确定性。对于后验计算,b-Deepnoise的唯一结构导致封闭形式的Gibbs采样算法,该算法从模型参数的后部完整条件分布中进行了迭代模拟,从而避免了计算密集的Metropolis-Hastings方法。 B-Deepnoise的理论分析建立了预测分布的递归表示,并分解了相对于潜在参数的预测差异。我们根据基准回归数据集的现有方法评估了B-Deepnoise,这在预测准确性,不确定性量化准确性和不确定性量化效率方面表明了其出色的性能。为了说明我们的方法在科学研究中的有用性,我们应用B-Deepnoise来预测青少年脑认知发展(ABCD)项目中神经影像特征的通用智力。
translated by 谷歌翻译
人类的持续学习(CL)能力与稳定性与可塑性困境密切相关,描述了人类如何实现持续的学习能力和保存的学习信息。自发育以来,CL的概念始终存在于人工智能(AI)中。本文提出了对CL的全面审查。与之前的评论不同,主要关注CL中的灾难性遗忘现象,本文根据稳定性与可塑性机制的宏观视角来调查CL。类似于生物对应物,“智能”AI代理商应该是I)记住以前学到的信息(信息回流); ii)不断推断新信息(信息浏览:); iii)转移有用的信息(信息转移),以实现高级CL。根据分类学,评估度量,算法,应用以及一些打开问题。我们的主要贡献涉及I)从人工综合情报层面重新检查CL; ii)在CL主题提供详细和广泛的概述; iii)提出一些关于CL潜在发展的新颖思路。
translated by 谷歌翻译
知识蒸馏在分类中取得了巨大的成功,但是,仍然有挑战性。在用于检测的典型图像中,来自不同位置的表示可能对检测目标具有不同的贡献,使蒸馏难以平衡。在本文中,我们提出了一种有条件的蒸馏框架来蒸馏出所需的知识,即关于每个例子的分类和本地化有益的知识。该框架引入了一种可学习的条件解码模块,其将每个目标实例检索为查询的信息。具体而言,我们将条件信息编码为查询并使用教师的表示作为键。查询和键之间的注意用于测量不同特征的贡献,由本地化识别敏感辅助任务指导。广泛的实验表明了我们的方法的功效:我们在各种环境下观察到令人印象深刻的改进。值得注意的是,在1倍计划下,我们将通过37.4至40.7地图(+3.3)与Reset-50骨架的Restinetet提升。代码已在https://github.com/megvii-research/icd上发布。
translated by 谷歌翻译
在本文中,我们提出了一种用于一般物体检测的第一自蒸馏框架,称为LGD(标签引导自蒸馏)。以前的研究依赖于强大的预酝酿教师,以提供在现实世界方案中可能无法使用的指导知识。相反,我们通过对象之间的关系间和帧间关系建模来生成一个有效的知识,只需要学生表示和常规标签。具体而言,我们的框架涉及稀疏的标签外观编码,对象间关系适应和对象内的知识映射,以获得指导知识。他们在培训阶段共同形成隐式教师,动态依赖标签和不断发展的学生表示。 LGD中的模块与学生检测器的端到端训练,并在推理中丢弃。实验上,LGD在各种探测器,数据集和广泛的任务上获得了体面的结果,如实例分段。例如,在MS-Coco DataSet中,LGD将Reset-50下的REDINENT改善2倍单尺度培训,从36.2%到39.0%地图(+ 2.8%)。它在2倍多尺度培训下使用Resnext-101 DCN V2等FCO的探测器增加了更强大的探测器,从46.1%到47.9%(+ 1.8%)。与古典教师的方法FGFI相比,LGD不仅在不需要佩金的教师而且还可以降低固有的学生学习超出51%的培训成本。
translated by 谷歌翻译
Algorithmic fairness is becoming increasingly important in data mining and machine learning. Among others, a foundational notation is group fairness. The vast majority of the existing works on group fairness, with a few exceptions, primarily focus on debiasing with respect to a single sensitive attribute, despite the fact that the co-existence of multiple sensitive attributes (e.g., gender, race, marital status, etc.) in the real-world is commonplace. As such, methods that can ensure a fair learning outcome with respect to all sensitive attributes of concern simultaneously need to be developed. In this paper, we study the problem of information-theoretic intersectional fairness (InfoFair), where statistical parity, a representative group fairness measure, is guaranteed among demographic groups formed by multiple sensitive attributes of interest. We formulate it as a mutual information minimization problem and propose a generic end-to-end algorithmic framework to solve it. The key idea is to leverage a variational representation of mutual information, which considers the variational distribution between learning outcomes and sensitive attributes, as well as the density ratio between the variational and the original distributions. Our proposed framework is generalizable to many different settings, including other statistical notions of fairness, and could handle any type of learning task equipped with a gradient-based optimizer. Empirical evaluations in the fair classification task on three real-world datasets demonstrate that our proposed framework can effectively debias the classification results with minimal impact to the classification accuracy.
translated by 谷歌翻译
This paper focuses on designing efficient models with low parameters and FLOPs for dense predictions. Even though CNN-based lightweight methods have achieved stunning results after years of research, trading-off model accuracy and constrained resources still need further improvements. This work rethinks the essential unity of efficient Inverted Residual Block in MobileNetv2 and effective Transformer in ViT, inductively abstracting a general concept of Meta-Mobile Block, and we argue that the specific instantiation is very important to model performance though sharing the same framework. Motivated by this phenomenon, we deduce a simple yet efficient modern \textbf{I}nverted \textbf{R}esidual \textbf{M}obile \textbf{B}lock (iRMB) for mobile applications, which absorbs CNN-like efficiency to model short-distance dependency and Transformer-like dynamic modeling capability to learn long-distance interactions. Furthermore, we design a ResNet-like 4-phase \textbf{E}fficient \textbf{MO}del (EMO) based only on a series of iRMBs for dense applications. Massive experiments on ImageNet-1K, COCO2017, and ADE20K benchmarks demonstrate the superiority of our EMO over state-of-the-art methods, \eg, our EMO-1M/2M/5M achieve 71.5, 75.1, and 78.4 Top-1 that surpass \textbf{SoTA} CNN-/Transformer-based models, while trading-off the model accuracy and efficiency well.
translated by 谷歌翻译